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Abstract— Large Language Models (LLMs) have demon-
strated remarkable planning abilities across various domains,
including robotic manipulation and navigation. While recent
work in robotics deploys LLMs for high-level and low-level
planning, existing methods often face challenges with fail-
ure recovery and suffer from hallucinations in long-horizon
tasks. To address these limitations, we propose a novel multi-
agent LLM framework, Multi-Agent Large Language Model
for Manipulation (MALMM). Notably, MALMM distributes
planning across three specialized LLM agents, namely high-
level planning agent, low-level control agent, and a supervisor
agent. Moreover, by incorporating environmental observations
after each step, our framework effectively handles intermedi-
ate failures and enables adaptive re-planning. Unlike existing
methods, MALMM does not rely on pre-trained skill policies or
in-context learning examples and generalizes to unseen tasks. In
our experiments, MALMM demonstrates excellent performance
in solving previously unseen long-horizon manipulation tasks,
and outperforms existing zero-shot LLM-based methods in
RLBench by a large margin. Experiments with the Franka
robot arm further validate our approach in real-world settings.

I. INTRODUCTION
Robotic manipulation has seen impressive advancements,

enabling agents to handle increasingly complex tasks with
greater precision and efficacy. Current solutions, however,
often struggle with generalization, in particular when using
imitation learning for policy training [1], [2]. Such methods
typically excel at specific tasks but lack the adaptability to
handle new tasks. One major drawback of imitation learning
is the labor-intensive and time-consuming process for data
collection, which limits the scalability of resulting policies.
Moreover, training task-specific manipulation policies typi-
cally require thousands of training episodes [1], [2], mak-
ing the approach computationally expensive and inefficient.
To cope with the generalization, robotics policies should
demonstrate a deeper understanding of their environment.
This involves recognizing and grounding relevant objects and
understanding the relationships between them [3]. Equipped
with this knowledge, policies can then plan and execute
actions more efficiently while adapting to changes in the
environment and new task requirements.

Recent advancements in Large Language Models (LLMs)
have demonstrated remarkable generalization and reasoning
capabilities across diverse domains such as commonsense,
mathematical, and symbolic reasoning [4]. These models,
particularly when scaled to billions of parameters, exhibit
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Block is dropped MALMM recovers and continues the task

Block is dropped Single Agent stacks blocks on dropped block

Fig. 1: Examples of executing “Stack four blocks at the
green target area” task by the Single Agent LLM (top) and
our Multi-Agent MALMM framework (bottom). MALMM
recovers after dropping one block and continues stacking
above the target area, while the Single Agent mistakenly
continues stacking blocks on top of the dropped block.

emergent abilities to break down complex tasks into simpler
steps through structured reasoning techniques such as chain
of thought [5]. LLMs have already shown promise in high-
level task planning in different domains, suggesting their
potential for flexible and versatile robotic manipulation.
Yet, recent LLM-based methods for robotic planning face
multiple challenges. One important issue is the tendency
of LLMs to produce incorrect high-level plans and low-
level control. Additionally, LLMs suffer from hallucinations
in long-context generation [6], which is often observed in
closed-loop LLM systems. As a result, they may disregard
geometric constraints and the parameters of predefined func-
tions or may even lose the sight of the goal.

In this work, we propose a Multi-Agent Large Language
Model for Manipulation (MALMM) that leverage the collec-
tive intelligence and the specialized skills of multiple agents
for complex manipulation tasks. Our framework incorporates
agents dedicated to high-level planning, low-level code gen-
eration and a supervisor that oversees transitions between
other agents and tools. We show that through the use of
multiple specialized agents in a multi-agent setup, we are
able to mitigate the hallucination issues observed in the case
of a single agent, as shown in Fig. 1.

Our contributions can be summarized as follows:
• We introduce the first multi-agent LLM framework for

robotic manipulation MALMM, equipped with special-
ized agents that bring collaborative and role-specific
capabilities to complex manipulation tasks.

• We demonstrate the advantages of the proposed multi-
agent framework through systematic ablation studies on
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Fig. 2: An overview of our multi-agent system, MALMM, which consists of three LLM agents—Planner, Coder, and
Supervisor—and a Code executor tool. Each agent operates with a specific system prompt defining its role: (1) the
Planner generates high-level plans and replans in case of intermediate failures, (2) the Coder converts these plans into
low-level executable code, and (3) the Supervisor coordinates the system by managing the transitions between the Planner,
the Coder, and the Code executor.

tasks with varying horizons and complexity.
• We evaluate MALMM in challenging zero-shot settings

both in a simulation and in the real world, and we show
substantial improvements over the state of the art.

II. RELATED WORK

A. Language Grounded Robotics

Language instructions enable the definition of complex
robotics tasks with compositional goals [7] and support
scalable generalization to new tasks [8]. The literature around
language grounding is vast, ranging from classical tools such
as lexical analysis, formal logic, and graphical models to
interpreting language instructions [7], [9]. Recently, much
effort has focused on adopting the impressive capabilities of
Large Language Models (LLMs) to language grounding in
robotics [8]. Additionally, recent advancements have ben-
efited from pre-trained LLMs thanks to their open-world
knowledge, tackling more challenging tasks such as 3D
robotic manipulation and leveraging code generation capa-
bilities to produce high-level, semantically-rich procedures
for robot control.

B. LLM for Robotics

Language Models have been used for various robotics
purposes including the definition of reward functions [10],
task planning [11], [12], failure summarization and guiding
language-based planners [13], and policy program synthe-
sis [14]. VoxPoser [15] and Language to Rewards [16] used
LLMs for generating reward regions for assisting external
trajectory optimizers in computing trajectory. Our work

is most related to methods using LLMs for manipulation
planning. Most of such work [12], [15] relies on pre-trained
skills, motion primitives, and trajectory optimizers and has
focused primarily on high-level planning. The closest to
our approach is Language Models as Zero-Shot Trajectory
Generators [11], which deployed a language model to gen-
erate high-level plans and then convert these plans into low-
level control. However, LLMs suffer from hallucinations,
which affect long-horizon task planning. Moreover, [11]
assumed the correct execution of each step and did not
account for occasional failures or unforeseen changes in the
environment. Our evaluation shows sizable improvements of
MALMM over [11] thanks to its multiple specialized agents
and intermediate environment feedback.

C. LLM-Based Multi-Agents in Robotics

Recently, several studies have focused on using LLMs
for sequential decision-making and complex reasoning
tasks [17]. There is also an emerging field of using multiple
agents driven by LLMs to solve complex tasks, including
robotic manipulation, in a collaborative manner [18]. In most
of the work in robotics, LLMs have been used in multi-robot
collaboration and communication. Moreover, Reinforcement
Learning (RL) policy agents are also used in collaboration
with LLMs, which limits their generalization to new tasks
and environments [19]. In contrast, we propose a multi-agent
framework, MALMM, which incorporates three role-specific
LLM agents and enables zero-shot execution of previously
unseen robotic manipulation tasks.
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Fig. 3: Agents for robotic manipulation: The figure illustrates three LLM-based manipulation frameworks: Single-Agent
(SA), Multi-Agent (MA), and Multi-Agent with Supervisor (MALMM), with the different number of agents in each
framework. All three frameworks begin by receiving an input command and the initial environment observation. Each
framework iteratively generates a high-level plan along with corresponding low-level code. After each intermediate step, the
frameworks use updated environmental observation to detect failures and replan as needed until the task is completed.

III. METHOD

Large Language Models (LLMs) have recently emerged as
a universal tool for a variety of tasks, including robotic nav-
igation and manipulation [20], [15], [14], [11]. Such models
exhibit surprising generalization abilities and support zero-
shot solutions for new tasks. While several recent methods
have explored LLMs for high-level task planning [21], [12],
other methods attempted to bring the power of LLMs to
the low-level trajectory planning [14], [11]. We follow these
works and leverage LLMs to precisely control the end ef-
fector to solve complex and previously unseen manipulation
tasks.

Trajectory planning is a complex problem that requires
reasoning about the precise shape, position, and semantics of
the objects as well as understanding object interactions. To
solve this problem, LLM agents can be instructed to handle
information about objects and robots by text prompts. To
harness the complexity of the problem, here we propose to
address the manipulation problem with multiple LLM agents.
Inspired by recent work on multi-agent LLMs, we design
agents specialized in different aspects of the manipulation
problem and connect them into a framework. Below, we de-
scribe our proposed Multi-Agent Large Language Model for
Manipulation (MALMM) framework in detail (see Fig. 2).

A. Preliminaries

Our goal is to design a LLM framework capable of
solving previously unseen manipulation tasks defined by
natural language instructions. We assume access to a robotic
environment equipped with a Franka robot arm supporting
manipulation actions of closing the gripper, opening the
gripper, and changing the gripper’s position and orientation.
Observations of the environment are given either as 3D poses
of objects and grippers obtained from a simulator or as a 3D
point cloud obtained from an RGBD camera. In the latter
case, we estimate the object poses and potential grasping

poses from the point cloud. We also assume access to a
LLM that can process language instructions together with
environment observations in the form of text.

B. MALMM: Multi-Agent Manipulation

The core motivation of our work is to investigate how
a multi-agent framework can leverage the collaborative and
role-specific reasoning capabilities of multiple LLM agents
to complete complex manipulation tasks. Below, we first
introduce a single-agent architecture and then we propose
its multi-agent extensions. The single- and multi-agent ar-
chitectures considered in our work are illustrated in Fig. 3.

Single Agent (SA). Single Agent is adopted from [11] by
environment-specific (RLBench [22] or real-world) prompt
tuning. Prompting LLMs to interpret natural language in-
structions in the form of executable primitive actions has
been shown successful for a variety of tasks, including
image understanding [23] and numerical reasoning [24].
Similarly, LLMs can be prompted to interpret embodied
tasks, e.g., open a wine bottle and convert them into a
sequence of primitive manipulation actions. A version of
such a system with a single LLM agent is outlined in
Fig. 3(a). Here, an LLM is first prompted to break down the
language instruction into a sequence of steps. It then uses
its code generation capabilities to translate each step into
executable Python code, using predefined functions to control
the end-effector. This code is then sent to a Python interpreter
that executes the steps in the environment. After each step,
the LLM receives new observations from the environment
and proceeds in a loop with planning and code generation
until meeting termination criteria.
Multi-Agent (MA). A Single Agent performing multiple
roles struggles to excel in all of them. To address this issue,
we propose two specialized LLM agents with shorter role-
specific contexts: the Planner and the Coder, see Fig. 3(b).



The Planner breaks down the language instructions into a
sequence of manipulation steps while the Coder iteratively
translates these steps into an executable Python code. After
each intermediate step, the Planner detects potential failures
and re-plans according to new observations of the environ-
ment.
Multi-Agent with a Supervisor (MALMM). Our final
multi-agent architecture (MALMM) extends MA with a
Supervisor agent that coordinates the Planner, the Coder,
and the Code Executor, as shown in Fig. 3(c). The Supervisor
decides which agent or tool to activate next based on the
input instructions, the roles of the individual agents, the
environmental observations, and the entire chat history of
the active agents.

C. Multi-Agent Prompting

Each agent is provided with a task-agnostic system
prompt. The agents rely solely on their internal world
knowledge for reasoning and decision-making. For prompt
construction, we draw inspiration from [11] and its study
of LLM-based trajectory generation for robotic manipula-
tion. We adapt the prompt according to our environments
(RLBench and real-world). Note that unlike other recent
work [14], [15], we do not provide the agents with any
examples for in-context learning and apply MALMM to new
tasks without any changes, i.e., in a zero-shot mode.

Each agent’s prompt is specifically designed to suit its role.
Since LLMs require step-by-step reasoning to solve tasks,
the Planner is prompted to generate steps that define the
intermediate goals needed to complete the task. MALMM
perceives the 3D environment using object poses provided
either by the internal state of the simulator or by analyz-
ing the visual observations (see Sec. III-D). Therefore, the
Planner is given a detailed description of the environment’s
coordinate system, enabling it to interpret the directions
from the gripper’s perspective. Given the limited exposure
of LLMs to grounded physical interaction data in their
training, LLM agents often fail to account for potential
collisions. To address this, we include generic collision-
avoidance rules in the Planner prompts. Moreover, in order
to handle intermediate failures, primarily due to collisions
or missed grasping, we prompt the Planner to evaluate the
outcomes after each intermediate step and, if necessary, to
replan based on the updated observations.

Finally, the Supervisor agent is prompted to manage the
framework, coordinating the transitions between the LLM
agents, the Planner, the Coder, and the Code Executor to
ensure successful task completion.

D. Environmental Observations

LLMs trained on textual inputs cannot directly perceive or
interpret 3D environments. Our agents receive information
about the environment either from the internal state space of
a simulator or from visual observations.
State-space observations. In this setup, the LLM agents
have direct access to the simulator’s state information. The
observations are provided as 3D bounding boxes, along with

the colors of the scene objects, and include the position, the
orientation, and the open/closed state of the gripper.

Visual observations. To apply MALMM in real-world set-
tings, we restrict observations to the front camera images and
the 3D point clouds obtained from an RGB-D sensor, and
then use pre-trained foundation models to extract information
about scene objects. To this end, we use gpt-4-turbo [25]
to obtain an object list relevant to the instruction text, and
then deploy LangSAM [26] to generate image segmentation
masks for the objects, e.g. block or red jar in the task
instruction. We then segment the 3D object point clouds by
projecting the 2D segmentation masks into the 3D space. To
compute accurate object-centric grasping poses, we apply
the M2T2 [27] model and predict grasps given 3D point
clouds of target objects. We use the obtained gripper poses
to control the gripper during grasping. To facilitate object
placement, we estimate the 3D bounding box of the target
object in the environment based on the task instructions.
For example, in the task close the red jar, the target object
would be the red jar. We extract the 3D bounding box
directly from the object’s point cloud, and use it to guide
the placement process. We leverage these visual observations
while conducting experiments in both simulated and real-
world settings.

IV. EXPERIMENTS

We evaluate the accuracy of MALMM in a zero-shot
settings, i.e. when solving diverse set of previously unseen
tasks defined by a short text description.

A. Implementation Details.

We use gpt-4-turbo1 [25] to drive the LLM agents in
all our experiments. Additionally, we report the results of
MALMM using LLaMA-3.3-70B [28] to demonstrate the
performance of our framework with an open-source LLM
model. For developing the multi-agent framework, we used
AutoGen [29], which is an open-source programming library
for building AI agents and facilitates collaboration between
multiple agents to solve complex tasks. To perform zero-
shot evaluation, we do not fine-tune our agents, and we use
no training data for in-context learning. We initially devel-
oped our prompts for the Stack Blocks task and used them
for other tasks without any task-specific tuning. MALMM
generates 3D waypoints, while the trajectories are computed
and executed using a motion planner, following the approach
commonly used in RLBench. Our code, prompts, and addi-
tional results are available from the project webpage [30].
B. Environment and Tasks.

We conduct the simulation in CoppeliaSim, interfaced via
PyRep, using Franka Panda robot with a parallel gripper.
The setup incorporates RLBench [22], a robot learning
benchmark that provides various language-conditioned tasks
with specified success criteria. For evaluation, we sampled
9 RLBench tasks, which feature diverse object shapes and

1The experiments were conducted in June 2024 using the latest check-
point.



TABLE I: Success rate for zero-shot evaluation on RLBench [22]: The table highlights the best-performing method for
each task in bold and the second-best-performing method is underlined. Symbols: † denotes LLaMA-3.3-70B as a base model,
‡ denotes GPT-4-Turbo as a base model.

Methods Basketball Close Empty Insert Meat Open Put Rubbish Stack Avgin Hoop Jar Container in Peg off Grill Bottle Block in Bin Blocks

CAP [14] 0.00 0.00 0.00 0.08 0.00 0.00 0.76 0.00 0.00 0.09
VoxPoser [15] 0.20 0.00 0.00 0.00 0.00 0.00 0.36 0.64 0.32 0.17
Single Agent (SA) [11] 0.52 0.40 0.36 0.24 0.44 0.80 0.92 0.48 0.20 0.50
MALMM (†) 0.84 0.88 0.60 0.80 0.64 0.84 0.84 0.56 0.32 0.70
MALMM (‡) 0.88 0.84 0.64 0.68 0.92 0.96 1.00 0.80 0.56 0.81

  Basketball in Close Jar Empty Container Insert onto          Meat off Grill           Open Wine                 Put Block Put Rubbish             Stack Blocks           
      Hoop                                                                                      Square Peg                                                Bottle                                                         in Bin

Fig. 4: Illustration of the nine RLBench [22] tasks used in our evaluation, featuring diverse tasks with varying task horizons
and different object shapes.

task horizons. Fig. 4 shows snapshots of the nine considered
tasks.

In our state-space observation setup, the input observations
are captured as bounding box coordinates and object orienta-
tions relative to the simulator’s ground truth reference axes.
To obtain visual observations, we used a single camera with
a frontal view of the scene, as illustrated in Figure 4. The
point cloud is derived from the depth map corresponding to
this view.

In the real-world setup, we evaluated five tasks on a
tabletop using a 7-DOF Franka Emika Panda Research 3
robot equipped with a parallel jaw gripper. Three of these
tasks are identical to those that use vision-based observations
from the simulator, while two are new. We use an Intel
RealSense D435i RGB-D camera to capture the frontal view
and the panda-py [31] library to control the robot arm.

C. Baselines.

We compare our approach to three state-of-the-art zero-
shot LLM-based manipulation methods: Code as Policies
(CAP) [14], VoxPoser [15], and single-agent (SA) [11]. For
CAP2, we build upon its official PyBullet [32] implementa-
tion and adapt it for use with RLBench. We used the official
implementation of VoxPoser3 without any modifications. Our
single-agent (SA) baseline is a version of “Language Models
as Zero-Shot Trajectory Generators” [11] with environment-
specific (RLBench or real-world) prompt tuning. Addition-
ally, for fair comparison between the Single Agent (SA)
and MALMM, the prompts we provided to both of them
were equivalent. The only difference is that in the case of
MALMM, the information and the instructions in the Single-
Agent prompt are distributed between the Supervisor, the
Planner, and the Coder according to their respective roles.
All the baselines use gpt-4-turbo as an LLM.

2https://code-as-policies.github.io/
3https://voxposer.github.io/

D. Results for Zero-Shot Evaluation

Table I presents the results for the three baseline methods,
along with our proposed MALMM, across 9 different tasks.
From the table, we observe that MALMM outperforms all
baselines across all 9 tasks, including long-horizon tasks
such as stack blocks and empty container, as well as tasks
involving complex shapes, such as meat off grill and rubbish
in bin. Moreover, the Code as Policies is able to generate a
successful trajectory for only two tasks. This limited success
is because the original Code as Policies implementation re-
lied on few-shot examples to perform well on tasks involving
regularly shaped objects. In our evaluation, we replaced these
few-shot examples with coordinate definitions and detailed
instructions about the functions available for the LLM to call.
However, Code as Policies completely failed in this zero-shot
setting, which was also reported in [11].

VoxPoser [15], which generates 3D voxel maps for value
functions to predict waypoints, successfully generated trajec-
tories for three tasks with good accuracy. For two of these
tasks, it was the second-best performing method. However,
its performance did not generalize well to other tasks.

Both the single-agent (SA) and our proposed multi-agent
framework, MALMM, successfully generated trajectories for
all 9 tasks. However, MALMM consistently outperformed
the SA approach by using different agents for specific roles,
enabling it to generate accurate high-level plans and low-
level code while mitigating hallucinations. In addition to
the gpt-4-turbo experiments, we evaluated MALMM using
the open-source LLaMA-3.3-70B [28]; the results are pre-
sented in Table I. Although there is a drop in performance
compared to gpt-4-turbo, MALMM, with LLaMA-3.3-70B,
outperforms the existing baselines by a sizable margin.

E. Multi-Agent Ablation

We performed ablation for each of the components
(agents) in MALMM in order to evaluate how each of them



TABLE II: Ablation study assessing the impact of different
components in MALMM: environment feedback, Planner
(P), Coder (C), and Supervisor (S).

Agents Environment P C S Stack Empty
Feedback Blocks Container

Single Agent (SA) ✗ ✗ ✗ ✗ 0.08 0.12
Single Agent (SA) ✓ ✗ ✗ ✗ 0.20 0.36
Multi-Agent (MA) ✓ ✓ ✓ ✗ 0.36 0.48
MALMM ✓ ✓ ✓ ✓ 0.56 0.64

contributes to the overall performance. We considered two
tasks, namely stack blocks and empty container, and report
the results in Table II.

We first analyzed the importance of the intermediate
environment feedback. To this end, we considered the Single
Agent (SA) setting and removed the environmental feedback
provided after each intermediate step. In this setup, LLM
generates the full manipulation plan at once and executes it
without revisions. As shown in Table II, the Single Agent
without environmental feedback exhibits 12% and 24% drop
in performance for the stack blocks and empty container
tasks, respectively. By analyzing the failure cases of both
methods, we observed that the environmental feedback pro-
vided after each intermediate step crucially affected the
agent’s ability to detect unforeseen situations and recover
from failures such as collisions and inaccurate grasping.

We next validated the advantage of the Multi-Agent
architecture with separate LLM agents for planning and
code generation. As shown in Table II, the Multi-Agent
system (MA), consisting of a dedicated Planner and Coder,
demonstrated 16% and 12% performance improvement over
SA for the two tasks respectively. This can be attributed
to the inherent limitations of LLMs in managing very long
context conversations [6]. In the SA setup, where a single
LLM is responsible for both the high-level planning and
the low-level code generation, the agent must handle an
extensive context, particularly for long-horizon tasks. This
often leads to errors such as failing to account for collisions
with other objects, omitting the input arguments for the
predefined functions, using variables before they were initial-
ized, and even forgetting the specified goal. In contrast, the
MA system mitigates these issues by dividing the workload
among specialized agents. The Planner and the Coder agents
in the MA setting focus on specific roles through specialized
prompts and communicate with each other, thus reducing
the likelihood of errors and hallucinations, in particular for
longer tasks.

Our initial Multi-Agent system pre-defines the cyclic se-
quence of the Planner, the Coder, and the Coder Executor,
see Fig. 3(b), assuming that each agent correctly completes
its task. However, hallucinations may occur even within
multi-agent systems [33]. For example, the Coder may miss
the variable initialization resulting in compilation errors or
incomplete sub-goal code generation, such as producing
code only for approaching the object without grasping it.
In such situations, the Coder may need to be re-executed
in order to correct possible errors before passing the control

to the Planner. To automate this process, we introduced a
Supervisor agent that dynamically re-routes the execution
process to the next agent based on the input instruction,
the entire communication history of all active agents, and
the role descriptions of all agents rather than following a
fixed sequence. This adaptive approach is at the core of our
MALMM framework, and it improves the performance of the
dual-agent MA setup by 20% in the ’stack blocks’ task and
16% in the ’empty container’ task, respectively, as shown in
Table II.

F. MALMM is Better at Long-Horizon Planning

To validate the effectiveness of MALMM in long-horizon
tasks, we created three variations of the ’stack blocks’ task,
each with a different number of blocks, and compared
the performance of MALMM to the Single Agent setup.
The results in Fig. 5 indicate that while the Single Agent
setup struggles with stacking 3 and 4 blocks, MALMM
substantially outperforms SA, in particular for tasks that
require longer planning.
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Fig. 5: Comparison of Single Agent vs. MALMM for
variations of the stack blocks task that require stacking 2,
3, or 4 blocks on top of each other.

G. Results for Vision-Based Observations

In order to approach real-world settings where direct
access to the environment states is not available, we next
perform experiments in simulation restricted to vision-based
observations in the form of 3D point clouds. We evaluate
the performance of MALMM and compare it to the Single
Agent setup on three tasks: (ii) put block, (ii) rubbish in
bin, and (iii) close jar. Consistently with our previous state-
based experiments, the results in MALMM in Table III show
sizable improvements over the Single-Agent baseline across
all three tasks and confirm the advantage of our proposed
Multi-Agent framework.

By comparing the results in Tables I and III we observe
degradation in performance when switching to vision-based
observations. This can be attributed to inaccuracies of the
vision-based estimators such as 3D bounding box detection
and grasp estimation. Note that our current vision pipeline
makes use of single-view scene observations. A parallel
work, Manipulate Anything [34] showed that a relatively
straightforward extension to multi-view settings can reduce
the impact of occlusions and yield higher accuracy.
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Fig. 6: Illustration of the five real-world tasks used in our evaluation.

Reunite brown horse with white one Save Cow Place Carnivore in Cage 
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Fig. 7: MALMM performs zero-shot manipulation on three unseen tasks in a real world, each guided by high-level user
instructions. (a) “Reunite the brown horse with the white one.” The environment contains a brown horse, a white horse, a
road, and a car; the goal is to place the brown horse near the white horse. (b) “Save Cow.” The environment contains a
bear, a cow, and a fenced enclosure; the goal is to place the cow inside the enclosure. (c) “Place Carnivore in Cage.” The
environment contains two horses, two cows, one zebra, a bear, and a cage; the goal is to place the bear inside the cage. In
each scenario, the left image shows the initial arrangement and the right image shows the final arrangement after MALMM
completes the instructed task.

TABLE III: Comparison of the Single Agent and MALMM
in a simulated environment with vision-based observations.

Agents Close Put Rubbish
Jar Block in Bin

Single Agent [11] 0.24 0.68 0.40
MALMM 0.56 0.84 0.52

H. Results for the Real-World Experiments

For the real-world robotics setup, we evaluated five tasks
as shown in Fig. 6: close jar (put lid on top of jar), put block
(place a block in the red target area), put rubbish in bin (place
rubbish in the bin), put case (place an earbuds case in the
red target area), and put jar in bin (place a jar in the bin) – in
ten different initial states, each with both MALMM and the
Single Agent. As shown in Table IV, consistently with our
simulation results, MALMM outperforms the Single Agent
on all five tasks by a sizable margin. It achieved a 40% higher
success rate for both put case and rubbish in bin, 30% higher
success rate for put block, and 20% higher success rate for
close jar and jar in bin. To further demonstrate zero-shot
capabilities of our method, Fig. 7 demonstrates successful
performance of MALMM for three new tasks, each defined
by high-level user instruction.

V. DISCUSSION

A. Limitations

Despite its string advantages over a Single LLM Agent,
MALMM has several limitations. First, MALMM relies

TABLE IV: Comparison of Single Agent and MALMM in
a real-world Franka robot arm environment.

Agents Close Put Rubbish Put Jar
Jar Block in Bin Case in Bin

Single Agent [11] 2/10 3/10 2/10 3/10 3/10
MALMM 4/10 6/10 6/10 7/10 5/10

on three gpt-4-turbo agents, making it costly to operate.
Using open-source LLMs is possible at the cost of re-
duced accuracy (cf. Table I). Second, like other LLM-based
planners, MALMM depends on manual prompt engineering,
which impacts its performance. However, advancements in
prompting [5] can reduce these efforts. Finally, MALMM
requires accurate bounding box estimation to determine the
correct grasp positions, but as the complexity of the objects
increases, the bounding boxes alone may not provide enough
information for precise grasping. Our experiments with a
vision pipeline in simulation and in a real-world scenario
suggest that using pretrained grasping and placement models,
such as M2T2 [27], could improve the performance for
complex manipulation tasks.

B. Conclusion and Future Work

We explored the use of LLM agents for solving previously
unseen manipulation tasks. In particular, we proposed the
first multi-agent LLM framework for robotics manipulation
MALMM and demonstrated its advantages over single-
agent baselines. Our method uses task-agnostic prompts and



requires no in-context learning examples for solving new
tasks. Extensive evaluations, both in simulation and real-
world settings, demonstrated excellent results for MALMM
for a variety of manipulation tasks. In future work, we will
consider tasks with richer object interactions, and we will
extend our experiments to more complex tasks.
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